Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

P. S. Patil, ${ }^{\text {a }}$ Mohd Mustaqim Rosli, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ * Ibrahim Abdul Razak ${ }^{\text {b }}$ and S. M. Dharmaprakash ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ${ }^{\text {b } X \text {-ray Crystallography Unit, }}$ School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.032$
$w R$ factor $=0.074$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(4-Bromophenyl)-3-(2,4,5-trimethoxy-phenyl)prop-2-en-1-one

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrO}_{4}$, the dihedral angle between the benzene rings is $9.60(16)^{\circ}$. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and Br. $\cdot \mathrm{O}$ short contacts.

Comment

Our long-standing interest in optical second harmonic generation (SHG) in organic materials, particularly in chalcone derivatives (Patil et al., 2006a,b,c), has led us to synthesize the title compound, (I) (Fig. 1). Crystals of (I) exhibit second-order non-linear optical properties as they crystallize in a non-centrosymmetric space group. A quantitative estimation is yet to be performed. In view of the importance of (I), its synthesis and crystal structure are reported here.

(I)

All bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable to those in related structures (Patil et al., 2006a,b,c). The enone unit makes dihedral angles of 4.87 (15) and 9.77 (12) ${ }^{\circ}$, respectively, with the C1-C6 and C10-C15 benzene rings. The dihedral angle between the benzene rings is $9.60(16)^{\circ}$. The three methoxy groups attached at C11, C13 and C14 are almost coplanar with the $\mathrm{C} 10-\mathrm{C} 15$ benzene ring, with $\mathrm{C} 16-\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12, \mathrm{C} 17-$ $\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 12$ and $\mathrm{C} 18-\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 15$ torsion angles of -13.7 (5), 6.4 (5) and $-5.7(5)^{\circ}$, respectively.

Intramolecular $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1$ and $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 2$ interactions are observed (Table 1); both interactions generate an $S(5)$ ring motif (Bernstein et al., 1995). The crystal structure is stabilized by intermolecular $\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{C} 16-$ $\mathrm{H} 16 B \cdots \mathrm{O} 1^{\mathrm{i}}$ interactions (symmetry code as given in Table 1) and these interactions generate a ring of graph-set motif $R_{2}^{1}(7)$. The short $\mathrm{Br} 1 \cdots \mathrm{O} 4\left(-\frac{3}{2}+x, \frac{3}{2}-y, 1-z\right)$ contact $[3.264(2) \AA$] also contributes to the stabilization of the crystal structure.

Experimental

4-Bromoacetophenone (0.01 mol) in ethanol (30 ml) was mixed with 2,4,5-trimethoxybenzaldehyde (0.01 mol) in ethanol (30 ml) and the

Received 14 September 2006 Accepted 19 September 2006
mixture was treated with an aqueous solution of sodium hydroxide ($5 \mathrm{ml}, 20 \%$). This mixture was stirred well and left for 12 h , after which time the solid product was collected by filtration and dried. Crystals of (I) were recrystallized from an acetone solution.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrO}_{4}$
 $M_{r}=377.23$

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.3031$ (3) \AA 。
$b=10.3422$ (4) \AA
$c=21.3355$ (9) A
$V=1611.47(11) \AA^{3}$

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005)

$$
T_{\min }=0.577, T_{\max }=0.754
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.074$
$S=1.03$
3101 reflections
211 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9A $\cdots \mathrm{O} 1$	0.93	2.45	$2.799(5)$	102
C9-H9A \cdots O2	0.93	2.36	$2.720(5)$	103
C12-H12A Ol^{i}	0.93	2.57	$3.470(4)$	164
C16-H16B \cdots O1 $^{\mathrm{i}}$	0.96	2.57	$3.303(5)$	133
Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$				
l				

H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118. PSP and SMD are grateful to DRDO, the Government of India for the financial assistance.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines indicate intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Figure 2
The crystal packing of (I), viewed down the a axis. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{O}$ short contacts.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Patil, P. S., Teh, J. B. J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o896-o898.
Patil, P. S., Teh, J. B. J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710-o1712.
Patil, P. S., Teh, J. B. J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006c). Acta Cryst. E62, o3096-o3098.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

